Pensions

Institute

DISCUSSION PAPER PI1-0822

Stochastic Mortality made Easy

Paul Sweeting
June 2008
ISSN 1367-580X

The Pensions Institute
Cass Business School
City University

106 Bunhill Row London
EC1lY 8Tz

UNITED KINGDOM

http://www.pensions-institute.org/



Stochastic Mortality made Easy

Paul Sweeting

Abstract

The purpose of this paper is to give actuaries an easy-to-use approach to modelling stochastic
mortality. Whilst the approach described can be used with tailor-made projections, it can also be
applied to published base tables and improvement factors. The methodology is not particularly new
or ground-breaking; however, it is hopefully accessible and will allow actuaries to use a stochastic
approach to mortality projections more easily.

1. Introduction
The importance of being able to model future mortality rates accurately has become increasingly
important. This is partly because past projections have been shown to be lacking, but also because
falling real interest rates have made the values of long-term pension and insurance policies much
more sensitive to projected longevity. However, as well as being able to model expected rates
accurately, it is important to model the uncertainty around these expected rates. Otherwise, we are
left using best estimates with margins for prudence, an approach that is out of step with the
stochastic approaches used elsewhere in actuarial work and more broadly in the world of finance
and investment.

A number of mortality models have been developed in recent years, and these have been able
increasingly to explain changes in mortality rates. However, they frequently exhibit one or more of
the following characteristics:

e the method used to parameterise the model makes it difficult to generate sample paths
(stochastic projections are not straightforward);

e parameterisation itself is not straightforward (the models are difficult to fit); and

e the writing style required for publication in refereed journals can make it hard to translate
the models into practical solutions (the models are difficult to understand).

What | try to do in this paper is therefore to give a practical approach to modelling mortality
stochastically. This means that the approach outlined is not wholly original — the important work
has been covered by other authors. Nor will this approach be as theoretically robust as some of
those produced by other authors. However, | believe that it is more important at this stage to
produce an approach that can —and will — be used.

Cairns et al (2008) categorise mortality risk as unsystematic and systematic. The former occurs
when the number of deaths is random even when the true mortality rate is known. The larger the
population is, the smaller is the unsystematic mortality risk. Systematic mortality risk, on the other
hand, is the component of mortality risk that cannot be diversified, in other words, uncertainty over
the true future mortality rate. It is the latter that | am concerned with modelling here, although the
former should be of interest to many pension schemes.



The structure of this paper is as follows. First, | give an overview of the structure of mortality rates,
looking at variation by time and age. | then develop a simple model to describe the structure of
mortality rates and their deviations from expected values. Finally, | show how these results can be
used to generate sample paths, or series of stochastic mortality rates and, ultimately, stochastic
annuity rates.

2. The Structure of Mortality Rates
The basic structure of a mortality rate curve will be familiar to most actuaries, and an example is
shown below in Figure 2.1. This demonstrates the features of being generally lower at younger ages
and then increasing exponentially (or in line with some similar function) for higher ages.

Figure 2.1 - Initial Mortality Rates for Male Lives aged 0 to 100, England and Wales, 2005
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Whilst familiar, this functional form is not particularly tractable — some sort of transformation is
needed to give a function that can be analysed more easily. Cairns et al (2007) find that two
functions that give more useful function forms for q,, the initial mortality rate. These are In(q,,),
the natural logarithm of the mortality rate; and the logit of the initial mortality rate,

In(q,/(1 — q,)). These are shown in Figure 2.2. It appears — at least for English and Welsh males in
2005 over a wide range of ages — that the logit function does a slightly better job of transforming the
initial mortality rate into a linear function, but for most of the range there is very little difference.
The natural logarithm provides an easier function to work with for later analysis; however, if
transforming initial mortality rates using natural logarithms, adding random variation and then
converting back into initial rates, there is the chance that the resulting rate will be greater than



unity. Whilst results can be artificially constrained to be less than this, is unsatisfactory. | therefore
use the logit function, as the inverse of this function — exp(z)/(1 + exp(z)) — is constrained to be
between zero and unity.

Figure 2.2 — Natural Logarithm and Logit of Initial Mortality Rates for Male Lives aged 0 to 100, England and Wales, 2005
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The range for which this chart is linear is of interest, as this is the range of ages that can easily be
modelled. However, this chart considers rates only over a single year, and to project rates into the
future some analysis of historical rates. The range of ages over which the logit of mortality rates is
linear is wider in 2005 than it was in earlier years. This means that the “useful” range of ages that
can be used for modelling is around age 50 to age 90. Other work frequently uses age 60 to age 90,
for example Cairns et al 2007; however, if the results here are to be applied to, say, the RMVO0O table
then starting the age range at age 50 is helpful. The progress of historical rates in this age range is
shown in the surface chart in Figure 2.3.

The range of years shown in this chart is 1910 to 2005, despite the fact that data is available going
back to 1841. The reason that the data range is limited is that the ultimate data sources change
through the whole period from 1841 onwards, but prior to 1910 the mortality rates appear
artificially smoothed. | have therefore used the smaller range show.



Figure 2.3 — Logit of Initial Mortality Rates for Male Lives aged 50 to 90, England and Wales, 1910 to 2005
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Source: Human Mortality Database — University of California, Berkeley (USA), and Max Planck Institute for Demographic
Research (Germany); author’s calculations

It is clear from the above chart that the year-to-year changes are the most important factors in
describing mortality rates. This can be confirmed by noting that the most obvious patterns are
ridges and peaks changing across the years. However, there are other more subtle patterns that it is
helpful to model. Most important is the cohort effect. This has been described by many authors,
but a good overview is given by Willets (2004). The cohort effect refers to the fact that people born
in certain years have experienced greater mortality improvements than those born either before or
after the period in question. For the UK, this refers to people born between 1925 and 1945. The
cohort effect is described by diagonal lines on the surface in Figure 2.3.

3. An Easy Approach

The first stage in this approach is to specify the model | use. This is:

(3.1)  logit(qyy) = @y +xBy + Ve + £xy
Where:

®  (y,y is the initial rate of mortality for a life aged x in year y;
e a, is the constant in year y;

e p,istheslope inyeary;and

e Y. is the constant for cohort ¢, wherec =y — x

® & yisanerrorterm



This is similar to model M6 described in Cairns et al (2007), including the fact that their model uses
the logit of the initial mortality rate. Model M6 is also described as a generalisation of the Cairns-
Blake-Dowd model — from Cairns et al (2006) — allowing for the cohort effect.

It is worth noting that much of the analysis in the literature uses central rather than initial mortality
rates. This is because the central rates can be taken to be as approximately equal to the force of
mortality. Being an instantaneous measure, this lends itself more easily for use in some models.
However, given that most practitioners will actually use initial rates of mortality — being interested in
the proportion of an initial population that will survive — | carry out all calculations here in terms of
initial rates.

| fit the data to this model using least squares regression. This is a basic approach which does not
make use of much of the information in the data. In particular, it ignores the actual number of
deaths and the exposed to risk at each age and in each year. Other methods, such as the Poisson
model used by Brouhns et al (2002) and others since, do make use of this information — but the
computational requirements are much greater than for the approach | use.

In order to specify the equation robustly, | do not include cohorts —or lives — for which there are five
or fewer observations. This means the earliest cohort is for lives born in 1825 (so men who were 85
in 1910; 86in 1911; 87 in 1912; and so on up to 90 in 1915) and the latest is for lives born in 1950
(so for men aged 50 in 2000; 51 in 2001; 52 in 2002; and so on up to age 55 in 2005). This means
that in (1) above, ¢ ranges from 1825 to 1950. Subject to this constraint and remembering that

¢ =y — x, x ranges from 50 to 90 and y ranges from 1910 to 2005.

So that the equation can actually be specified, some of the parameters need to be excluded. | omit

@2005, B2005, Y1949 and ¥1950.

Carrying out this regression gives the building blocks for the next stage of the process. There are
two approaches that can be used here. The first involves projecting mortality rates and stochastic
variation around them; the second involves deriving only the stochastic variation and applying this to
an existing projection. | describe only the second approach, for two main reasons. First, the
simplistic nature of this approach is unlikely to give central projections of mortality that are as well-
informed as some of the official projections; secondly, given that a range of accepted projection
bases exists, it is probably more helpful to provide a methodology for the application of stochastic
variation around these projections.

Although a cohort factor has been modelled, its main purpose is to reduce the degree of
unexplained variation in the rest of the model; only a,, and f,, the level and slope factors with
respect to age for each year must be analysed. The analysis takes the following stages:

e foray, linear regression is applied to the coefficients @, to a,, where y = 0 for the first year
of observation;

o theresults are then used to estimate &,,,;

e the difference between &, and a,, is then calculated as Aay,, = @z, — Aoy

e the process is then repeated using the coefficients a5, to a3,, and so on until all coefficients
have been analysed,;

e at this point, the same process is carried out with 8, to 8,,, to give f3,, and then AB,,; and



e the standard deviations of A and Ap are then calculated and annualised as 0,4 and g,p
respectively, and the correlation between them is calculated as pag ap-

It is worth explaining in words what gpq, 0pp and paq ap represent. The first two terms describe the
extent to which estimates of the shape of future mortality curves (given as a linear function of the
logit of the initial rate) differ from the actual rates in terms of the level and the rate of change with
age; the third term describes how the difference in one of these estimates is correlated with the
difference in the second.

Clearly the choice of n is key here. A larger value of n is more consistent with a longer projection
period, but gives fewer observations. Both standard deviations show broadly increasing values with
time, as shown in Figure 3.1 below. However, the number of observations on which this conclusion
is based becomes increasingly small. Having said this, using the 20-year values of a value of 0.262
for opq and 0.00358 for g, seems reasonable, even conservative.

Figure 3.1 — Annualised Standard Deviations for Model Parameters
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Moving on to the correlation between these Aa and AS, it becomes clear that something strange is
happening, as the correlation is highly negative, frequently being less than -0.9, as shown in figure
3.2. This is because both of these variables have exhibited changes in trend which a purely analytical
process — as used here — fails to pick up, giving this strong negative correlation.



Figure 3.2 — Correlation between Model Parameters
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This feature can be used to make stochastic simulation more straightforward. If the correlation is

taken to be -1, then the two-factor model reduces to a one-factor formulation.

4. Applying These Results

What | now have is a basic one-factor mortality model. In order to apply this to an existing table, the

following stages are followed:

(4.2)

for the scenario s, generate a normal random variable Vf’s with zero mean and unit standard
deviation for each future year f;
multiply V s by 0.262 to get g, and by 0.00358 to get o, for each year;

calculated the stochastic adjustment A, ¢ ; for future year f, scenario s and each age x as:
v/ —
Axfs = Yp=o(0.262V, s — 0.00358V,, .x)

construct a “central projection” of g, r for each future year f and each age x using
published base tables and projection factors for each age and future year of interest;
calculate the logit of each of these values, lq, s:

lgyr = ln(Qx.f/(l - q?C.f))

apply the stochastic adjustment for future year f, scenario s and each age x to give the logit
of the simulated mortality rate, lq, f s:




(4.3) lCIx,f,s = lCIx,f + Ax,f,s

e convert this back to an initial rate to give the simulated initial rate of mortality for future
year f, scenario s and age x:

(4.4)  Qyfs= exp(qu,fls)/(l + EXp(qu.f,S))

These mortality rates can then be used to calculate annuity factors using commutation functions or
other approaches. An Excel spreadsheet is provided to show how all of this can be done in practice.

To see how much difference this stochastic mortality approach makes, | carry out some calculations
of annuity values. The first results are given in Figure 4.1. These show selected percentiles of
annuity rates calculated from stochastic initial mortality rates based on RMV00 and the long cohort
projection basis (with year zero being 2007), compared with the annuity rates calculated using a
deterministic with the same base table and long cohort with 0%, 1% and 2% floors. A real interest
rate of 2% is used.

Figure 4.1 — Comparison of Annuity Rates
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Reassuringly, the median from the stochastic calculations sits very close to the result from the
deterministic long cohort calculation, but it is interesting to see that even at relatively young ages
the deterministic projections fall below the 95th percentile of the stochastic calculations, and even
below the 75th percentile for most of the range. This is easier to see if the results are presented as a
proportion of the deterministic long cohort result, as they are in Figure 4.2, below.



Figure 4.1 — Comparison of Annuity Rates
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Another way of thinking about the difference is to consider the difference in values for an annuity
book made up of a stable population of pensioners. If the age range of the stable population is 50
years of age and higher, then relative to a portfolio valued using the long cohort approach the 75th
percentile using a stochastic approach is 2.6% higher, whilst the 95th percentile is 7.3% higher. This
compares with an increase of 0.7% if a 1% floor is added to the long cohort basis, or an increase of
3.0% if the floor is at the 2% level.

This confirms what other studies have shown — that allowing for uncertainty in mortality projections
can have a big impact on the level of reserves that might be required.

5. Limitations of this Approach
Whilst this method does (hopefully) give a useable approach for modelling mortality stochastically, it
is important to recognise the limitations of this approach. In summary, these are:

e theoretically, the central (rather than the initial) rate of mortality should be modelled, and
the result converted into an initial rate;

e the logit (or the natural logarithm) of mortality is not necessarily a linear function of age for
ages outside the range modelled here — in particular, mortality at extreme old ages is often
lower than predicted by a linear model, and the “accident hump” at younger ages is not
picked up using a simple approach;



e mortality improvements are independent from year to year — whilst there are independent
random fluctuations in mortality each year, the bigger risk is that the trend in mortality
improvements will change;

e the method used does not allow for the number volume of available data at different ages

Hopefully, easy-to-use models will appear that address these limitations, but hopefully the approach
presented here will be useful in the meantime.
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