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ABSTRACT 
Age-Period-Cohort (“APC”) models have been criticised on a number of grounds.  One area of 

concern is in relation to projecting future cohorts.  However, we would argue that such projection 

is unnecessary in some key cases, such as for closed defined benefit pension schemes. 

More fundamental issues relate to the fit itself.  APC models typically use at least one parameter 

for each cohort, in addition to those used for parameters age and period.  This leads to a large 

number of parameters which are not necessarily independent. 

However, the model we propose here uses a potentially far smaller number of parameters that 

essentially describe times where a new type of cohort emerges.  This is similar to the trend-

change models of mortality improvement discussed by as described by Sweeting (2011), Coelho 

and Nunes (2011), and van Berkum et al (2014).  Because this cohort approach identifies a small 

number of changes in cohort rather than imposing a new cohort parameter for each year of birth, 

this reduces the risk of interdependence. 

1. INTRODUCTION 
Despite fitting mortality date well (Cairns et al 2009), Age-Period-Cohort (“APC”) models have 

been criticised on a number of grounds.  The first are of concern is in relation to projecting future 

cohorts. 

As Booth and Tickle (2008) remark: “The APC model has been usefully applied in describing the 

past, but has been considered less useful in forecasting”.   This is because it is difficult to find any 

discernible pattern for cohort factors, meaning that the projection of the adjustment for future 

cohorts is no straightforward. 

However, for a closed portfolio of lives – such as that which would be found in a pension scheme 

closed to future accrual or even just to new members – there would be no future cohorts.  As 

such, the projection of future cohorts would not be necessary.  Such schemes are increasingly 

common.  According to the Pension Protection Fund (2015), 51% of defined benefit schemes are 

closed to new members whilst a further 34% are closed to future accrual.  In both cases, the 

population is already known, and no future cohorts will be added. 

A more fundamental issue with APC models relates to the fit itself.  In a typical APC model, the 

mortality rate at each age is determined by a combination of parameters relating to the age, 

period and cohort of rate in question.  Currie (2012) computes the canonical correlations between 

the estimates for the three variables of the APC model and found for the data in that paper and 
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finds that all lie between 0.4 and 0.7, significantly different from zero, quantifying concerns 

around APC models first raised by Clayton and Schifflers (1987). 

Furthermore, the number of variables in most APC models significantly increases the risk of over-

fitting.  In Cairns et al (2009), the number of variables increases from 102 to 144 when the Lee-

Carter model (Lee and Carter, 1992) is expanded by Currie (2006) to allow for a cohort effect, and 

to 203 if the Renshaw and Haberman (2006) alternative is used.  Similarly, the Cairns-Blake-Dowd 

or CBD model (Cairns et al, 2006) has only 88 variables, but adding a cohort effect increases this 

to 159. 

We believe that this over-parameterisation can be avoided by viewing cohort effects differently.  

Starting with the CBD model, we propose an extension that views the logit-mortality surface as 

being described adequately by age and period factors except for those instances when a cohort 

“event” occurs.  This then change the direction of the cohort’s mortality until another “event” 

occurs. Because the location of these events is carried out independently from the fitting of the 

model, this process also removes one element of the interdependence between the age, period 

and cohort factors.  As such, it offers a parsimonious and robust approach to APC modelling.  We 

call the new model a Piecewise Linear Cohort-based (PLC) mortality model. 

2. THE COHORT EFFECT 
The last quarter of a century has seen great improvements in mortality modelling, from the Lee-

Carter model (Lee and Carter 1992) and its extensions (Brouhns et al, 2002; Renshaw and 

Haberman, 2003a, b, c, 2006; Continuous Mortality Investigation Bureau, 2005) to the CBD model 

(Cairns et al, 2006) and its extensions (Cairns, et al, 2009). Cairns, et al (2009) comprehensively 

compare and rank these models in terms of the Bayesian Information Criterion (BIC). 

Cairns et al (2009) consider three families of model. The first is the Lee-Carter – or L-C – model 

family. The L-C model, which is a single-factor model that assumes no smoothness across ages or 

years; the second is the P-spline model which uses penalised basis splines to impose smoothness 

across years and ages; and the third is the CBD model family which assumes smoothness across 

ages in same year, but makes no assumption of smoothness between different years.  It is the 

third family that we use in this paper. 

According to Cairns, et al. (2009), the cohort factor representing the effect of the birth year 

improves the fit of mortality models considerably.  This is due to the fact that it takes into account 

the cohort effect. 

The starting point for this analysis is the CBD model, given in Cairns et al (2006), and referred to 

as model M5 in Cairns et al (2009).  This is defined in Equation 1. 

(Eq. 1)    logit 𝑞(𝑡, 𝑥) = 𝜅𝑡
(1)
+ 𝜅𝑡

(2)(𝑥 − �̅�) + 𝜀𝑡,𝑥 

where  𝑞(𝑡, 𝑥) is the initial mortality rate for a life aged 𝑥 in year t; �̅� is the average of the ages 𝑥; 

𝜅𝑡
(1)

 denotes the intercept parameter in year 𝑡; 𝜅𝑡
(2) denotes the slope parameter in year 𝑡; and 

𝜀𝑡,𝑥 is an error term.  The function logit 𝑞(𝑡, 𝑥) is calculated as: 
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(Eq. 2)    logit 𝑞(𝑡, 𝑥) =
𝑞(𝑡,𝑥)

1−𝑞(𝑡,𝑥)
 

The logit function is used because the initial mortality rate,  𝑞(𝑡, 𝑥), cannot be allowed to exceed 

one – the initial population must always be at least as great as the number of deaths in the period.  

As such, although logit 𝑞(𝑡, 𝑥) can take values from zero to infinity, its inverse is bounded by zero 

and one. 

Model M5 is extended by Cairns et al. (2009) with the addition of a series of cohort factors, 𝛾𝑡−𝑥, 

to give model M6, shown in Equation 3: 

(Eq. 3)    logit 𝑞(𝑡, 𝑥) = 𝜅𝑡
(1)
+ 𝜅𝑡

(2)(𝑥 − �̅�) + 𝛾𝑡−𝑥
(3)

+ 𝜀𝑡,𝑥  

In all our analysis, we fit data from the Human Mortality Database (HMD) for England and Wales 

using 𝑡 = 1961,1962,⋯ ,2013 and 𝑥 = 60,61,⋯89.  Cairns et al (2009) use the same age range, 

but their observations cease in 2004; we are able to extend our analysis to 2013.  Following Cairns 

et al, we exclude cohorts with fewer than five observations.  We then convert the initial rate of 

mortality, 𝑞(𝑡, 𝑥), to the central rate, 𝑚(𝑡, 𝑥), using the relation in Equation 4: 

(Eq. 4)    𝑚(𝑡, 𝑥) = −ln[1 − 𝑞(𝑡, 𝑥)]  

The models are fitted by assuming that deaths 𝐷(𝑡, 𝑥) follow a Poisson distribution with a mean 

of 𝐸(𝑡, 𝑥)𝑚(𝑡, 𝑥), as described by Brouhns et al (2002).  This means that the likelihood, 𝐿, is given 

by: 

(Eq. 5)   𝐿 = ∏
𝑒−𝐸(𝑡,𝑥)�̂�(𝑡,𝑥)(𝐸(𝑡,𝑥)�̂�(𝑡,𝑥))𝐷(𝑡,𝑥)

𝐷(𝑡,𝑥)!𝑡,𝑥 , 

and the log likelihood, ln 𝐿, is given by: 

(Eq. 6)   ln 𝐿 = ∑ [𝐷(𝑡, 𝑥) ln𝐸(𝑡, 𝑥)�̂�(𝑡, 𝑥) − 𝐸(𝑡, 𝑥)�̂�(𝑡, 𝑥) − ln𝐷(𝑡, 𝑥)!]𝑡,𝑥 , 

where �̂�(𝑡, 𝑥) is the estimated central mortality rate derived from the mortality model. 

The results for our fit of M5 are shown in Figure 1, whilst our fit of M6 is shown in Figure 2.  In 

Figure 1.  The first panel row shows the intercept parameter 𝜅𝑡
(1)
 whilst the second shows the 

slope parameter 𝜅𝑡
(2).  In Figure 2, these two parameters are shown again in the first row, with 

the cohort parameter, 𝛾𝑡−𝑥, shown in the second row. 
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Figure 1: Estimated values of parameters 𝜅𝑡
(1)

and 𝜅𝑡
(2) in M5 (Equation 1), England and Wales, males, age 

60-89, year 1961-2013 

   

Source: Human Mortality Database; authors’ calculations 

 

Figure 2: Estimated values of parameters 𝜿𝒕
(𝟏)

, 𝜿𝒕
(𝟐) and 𝜸

𝒕−𝒙
 in M6 (Equation 3), England and Wales, males, 

age 60-89, year 1961-2013 

  

 

Source: Human Mortality Database; authors’ calculations 
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The second row in Figure 2 shows the impact of the cohort effect.  As mentioned by Willets (2004) 

and Renshaw and Haberman (2006), several noticeable features should be taken into account, 

the most noteworthy of which is the steep relative fall in mortality rates for those born from the 

mid 1920’s.  It is also interesting to note the discontinuity in 𝛾𝑡−𝑥 in 1919 and 1920.  There is a 

similar but much smaller discontinuity in 1947-9.  The fact that these discontinuities are around 

the ends of the two world wars suggests that the end of the world wars coincided with data 

anomalies. This is important, as it suggests that any parameterisations involving changes around 

these points should be viewed with suspicion.  Rather, it suggests that an M6-like adjustment may 

be appropriate for anomalous cohorts only.  We investigate this later. 

Renshaw and Haberman (2006) point out that there is another discontinuity in 1887, which can 

be traced to a set of outliers, and that this is possibly due to mis-stated exposures for this 

particular cohort.  Because this is near to the start of our dataset, it is difficult to see that anomaly 

here.  More obvious is the move from cohorts with declining mortality to improving mortality in 

1900.  A detailed analysis of the cohort effect in the UK is given by Willets (2004). 

The first two parameters in Figure 2 give the trend of mortality improvements (𝜅𝑡
(1)

) and the 

impact of these improvements at various ages (𝜅𝑡
(2)

).  As Cairns et al (2006) note for the basic CBD 

model, these parameters suggest that mortality rates have been falling – that is, improving – over 

the entire period, and that rates at higher ages are decreasing at a lower rate. 

3. PROPOSED MODELS 
In each calendar year, mortality rates can be fitted as a smooth linear function using the CBD 

model. However, because of the cohort effect, there are diagonal breaks across the entire 

surface. As discussed above, model M6 deals with this by adding a separate cohort factor to the 

logit of mortality rates for each year of birth (Eq 3). However, an alternative is to use two or more 

linear functions to fit logit 𝑞𝑡𝑥 in each calendar year, with the break occurring between the same 

cohort or cohorts across the years.  The principal here is similar to that used to model changes in 

the period parameter, as described by Sweeting (2011), Coelho and Nunes (2011), and van 

Berkum et al (2014).  To do this, we need to know the cohorts for which there is a break.  We do 

this by finding each break in turn using a sup-LR approach, motivated by Andrews (1993, 2003).  

The sup-LR test identifies a break by identifying the point where a break is most statistically 

significant.  It does through a likelihood ratio test.  The test statistic here is −2 ln(𝐿0/𝐿1,𝑡−𝑥), 

where 𝐿1,𝑡−𝑥 is the PLC model with a break at year of birth 𝑡 − 𝑥, and 𝐿0 is model M5.  The test 

statistic has a chi-squared distribution where the number of degree of freedom is the difference 

between the number of parameters used.  Since 𝐿0 is the same in each case, the breakpoint can 

be found by looking for the highest value of ln(𝐿1,𝑡−𝑥).  This does assume that the number of 

parameters is the same for all values of ln(𝐿1,𝑡−𝑥), which is true only for the middle cohorts; 

however, the difference in the values of the log likelihood function is such that the order of 

significance would not change. 

Having found the first break point, the procedure is then repeated with that breakpoint already 

in place to find a second breakpoint, and then a third.  At this point, the number of variables is 
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similar to that under model M6.  We take this to be the maximum number of desirable break 

points for the dataset that we have. 

An attraction of the sup-LR approach is that it gives an indication of the relative importance of 

the breaks.  However, there is always the possibility that other combinations of breaks – 

combinations that might not be found using the above approach – might give a higher log 

likelihood.  We therefore also implement an Iterative Grid Search (IGS) method (Thisted, 1988) 

for the case where we have three breaks.  In our implementation of this approach, we first look 

for the combination of dates giving the highest log likelihood with the dates being spaced by 

sixteen years.  Within the cube of years specified by the sixteen years either side of this point for 

each break, we then look for the highest log likelihood with the dates being spaced by four years.  

The cube is then re-defined and the log likelihood-maximising combination of years is 

determined. 

The mechanism of the breakpoints can be shown as follows.  Supposing there is a single kink in 

the logit of mortality rates in a particular year 𝑡 occurring for lives born before and after year c.  

Suppose also that this occurs in the years when the people who were born exactly in year c were 

between ages 60 to 89 (Figure 3).  In this case, two linear functions can be used to fit the logit of 

mortality rates, instead of the one linear function in model M5. The model can be fitted using the 

Poisson maximum likelihood approach described by Brouhns et al (2002). 

Figure 3: Method of modelling logit mortality using two linear functions and a continuity constraint 

 
Source: authors 
We assume that there is a constraint that the two linear functions connect to each other. The 

constraint ensures that there is no first order discontinuity between the two linear functions, and 

also reduces the number of parameters required. This model (denoted as PLC1, where) can be 

described as: 

(Eq. 4)               logit 𝑞(𝑡, 𝑥) = {
𝜅𝑡
(11)

+ 𝜅𝑡
(12)(𝑥 − �̅�) + 𝜀𝑡𝑥 , 𝑡 − 𝑥 ≥ 𝑐  

𝜅𝑡
(21)

+ 𝜅𝑡
(22)(𝑥 − �̅�) + 𝜀𝑡𝑥 , 𝑡 − 𝑥 ≤ 𝑐 

 

Constraint: 𝜅𝑡
(11)

+ 𝜅𝑡
(12)(𝑡 − 𝑐 − �̅�) = 𝜅𝑡

(21)
+ 𝜅𝑡

(22)(𝑡 − 𝑐 − �̅�), 

where year c is a kink point of birth year; 𝜅𝑡
(𝑖1)
, 𝑖 = 1,2 denotes intercept factor in year t: 𝑖 = 1, 

fits the equation for ages less than or equal to 𝑡 + 𝑐, while 𝑖 = 2 fits the equation to those whose 

Linear function 1 

Linear function 2 

60 89 

Kink point t – c 

x (born in year c) 

t – x ≥ c 

t – x ≤ c  

lo
gi

t 
q

(t
,x

) 
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ages are more than or equal to 𝑡 − 𝑐; 𝜅𝑡
(𝑖2)
, 𝑖 = 1,2 denotes slope factor in year 𝑡, with 𝑖 having 

the same meaning as before; and 𝜀𝑡𝑥 is an error term.  The term c remains constant across the 

years investigated. Once a value for 𝑐 has been found that maximizes the log likelihood, the 

cohort birth year is fixed at year 𝑡 − 𝑐. 

PLC Model Two (PLC2) allows for two kink points rather than one, which improves the goodness-

of-fit. The mechanism using two kink points is similar to PLC1, breaking the original smoothly 

linear function of CBD model into a piecewise linear function with the two kink points for given 

birth years as shown in Figure 4. This shows an instance when both kink points are located 

between age 60 and 89, although the kink points can also be outside the span of ages shown here. 

This model is also fitted under the assumption that the number of deaths follows a Poisson 

distribution. 

Figure 4: Method of modelling logit mortality using three linear functions and a continuity constraint 

 

 

Source: authors 

This model (denoted as PLC2) is described as:  

(Eq. 5)               logit 𝑞(𝑡, 𝑥) = {

𝜅𝑡
(11)

+ 𝜅𝑡
(12)(𝑥 − �̅�) + 𝜀𝑡𝑥 ,            𝑡 − 𝑥 ≥ 𝑐2

𝜅𝑡
(21)

+ 𝜅𝑡
(22)(𝑥 − �̅�) + 𝜀𝑡𝑥,  𝑐1 ≤ 𝑡 − 𝑥 ≤ 𝑐2

𝜅𝑡
(31)

+ 𝜅𝑡
(32)(𝑥 − �̅�) + 𝜀𝑡𝑥 ,            𝑡 − 𝑥 ≤ 𝑐1

 

 

Constraints: 

𝜅𝑡
(11)

+ 𝜅𝑡
(12)(𝑡 − 𝑐2 − �̅�) = 𝜅𝑡

(21)
+ 𝜅𝑡

(22)(𝑡 − 𝑐2 − �̅�) 

𝜅𝑡
(21)

+ 𝜅𝑡
(22)(𝑡 − 𝑐1 − �̅�) = 𝜅𝑡

(31)
+ 𝜅𝑡

(32)(𝑡 − 𝑐1 − �̅�) 

where, year 𝑐1  and 𝑐2  are two kink points of birth year, and 𝑐1 < 𝑐2 ; 𝜅𝑡
(𝑖1)
, 𝑖 = 1,2,3 denotes 

intercept factor in year t: 𝑖 = 1 fits the equation for ages less than and equal to 𝑡 − 𝑐2, 𝑖 = 2 fits 

the equation for ages greater than or equal to 𝑡 − 𝑐2 but less than or equal to 𝑡 − 𝑐1, and 𝑖 = 3 

 

Lo
gi

t 
q(

t,
x)

 

Kink point t – c_2 Kink point t – c_1 
Linear function 1 

Linear function 2 
Linear function 3 

60 89 x_1 (born in year c_2) x_2 (born in year c_1) 

T – x ≥ c_2 

c_1 ≤ t – x ≤ c_2 
t – x ≤ c_1 
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fits the equation for ages greater than or equal to 𝑡 − 𝑐1; 𝜅𝑡
(𝑖2)
, 𝑖 = 1,2,3 denotes slope factor in 

year t, with 𝑖 having the same meaning as before; 𝜀𝑡𝑥 is an error term. 

By the same reasoning, more kink points can be added. Therefore, a comprehensive model with 

continuity constraints can be given by: 

(Eq. 6)               logit 𝑞(𝑡, 𝑥) =

{
 
 

 
 𝜅𝑡

(11)
+ 𝜅𝑡

(12)(𝑥 − �̅�) + 𝜀𝑡𝑥 ,                        𝑡 − 𝑥 ≥ 𝑐𝑛

𝜅𝑡
(21)

+ 𝜅𝑡
(22)

(𝑥 − �̅�) + 𝜀𝑡𝑥,          𝑐𝑛−1 ≤ 𝑡 − 𝑥 ≤ 𝑐𝑛
⋯                                             ⋯

𝜅𝑡
((𝑛+1)1)

+ 𝜅𝑡
((𝑛+1)2)(𝑥 − �̅�) + 𝜀𝑡𝑥,         𝑡 − 𝑥 ≤ 𝑐1

 

Constraints: 

𝜅𝑡
(11)

+ 𝜅𝑡
(12)(𝑡 − 𝑐𝑛 − �̅�) = 𝜅𝑡

(21)
+ 𝜅𝑡

(22)(𝑡 − 𝑐𝑛 − �̅�) 
⋯ 

𝜅𝑡
(𝑛1)

+ 𝜅𝑡
(𝑛2)

(𝑡 − 𝑐1 − �̅�) = 𝜅𝑡
((𝑛+1)1)

+ 𝜅𝑡
((𝑛+1)2)

(𝑡 − 𝑐1 − �̅�) 

 
where the kink points are 𝑐𝑖 , 𝑖 = 1,2,⋯𝑛; 𝑐1 < 𝑐2 < ⋯ < 𝑐𝑛−1 < 𝑐𝑛.  

We denote a PLC model as PLCk(c1,c2,…), in which k represents the number of kinks used in 

estimation, and (c1,c2,…) are cohort years (cohort kinks). 

4. EVALUATION 
As for the analysis of M5 and M6, we fit data from the Human Mortality Database (HMD) for 

England and Wales using ages 60 to 89 and years 1961 to 2013.  Following Cairns et al, we exclude 

cohorts with fewer than five observations.  Again, we calculate the central mortality rate, 𝑚(𝑡, 𝑥), 

from the initial mortality rate given by the model, and fit the model using the Poisson approach 

of Brouhns et al (2002).  Using a sup-LR approach, we calculate the year of birth for which the 

first break is likely.  Including this break we then look for the second and then the third.  The 

traces of the log likelihoods are shown in Figure 5, together with those for models M5 and M6.  

Summary information for the fitted models is then given in Table 1.  This includes the Bayesian 

Information Criterion (BIC) and Akaike Information Criterion (AIC).  Then, in Figure 6, I give 𝜅𝑡
(𝑖1)

 

and 𝜅𝑡
(𝑖2)

 for 𝑖 = 1 to 3 before showing the fit of these functions for the calendar years 1985 in 

Figure 7.  We also use IGS to derive the break points, and this approach gives the same results.  

This is likely to be because the number of breaks is small, and because the final break is between 

the other two. 
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Figure 5: Log likelihood for model M5, PLC1, PLC2 and PLC3, England and Wales, males, age 60-89, year 

1961-2013 

 

Source: Human Mortality Database; authors’ calculations 

Table 1: Summary data for models M5, M6, PLC1, PLC2 and PLC3, England and Wales, males, age 60-89, 

year 1961-2013 

Model Parameters Log likelihood AIC BIC Break Years 

M5 106 -18,454.0 37,119.9 37,688.0 N/A 

M6 180 -9,999.1 20,358.1 21,322.7 N/A 

PLC1 136 -16,401.0 33,074.1 33,802.9 1900 

PLC2 158 -15,109.0 30,533.9 31,380.6 1900, 1932 

PLC3 188 -14,601.0 29,578.0 30,585.5 1900, 1920, 1932 
Source: Human Mortality Database; authors’ calculations 
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Figure 6: Estimated values of parameters 𝜿𝒕
(𝒊𝟏)

and 𝜿𝒕
(𝒊𝟐) for 𝒊 = 𝟏 to 𝟑 in PLC models, England and Wales, 

males, age 60-89, year 1961-2013 

  

Source: Human Mortality Database; authors’ calculations 

Figure 7: Logit q(1985,x) for PLC3, England and Wales, males, age 60-89 

 

Source: Human Mortality Database; authors’ calculations 

As Table 1 shows, each successive version of PLC model is a significant improvement on model 

M5 according to both the AIC and the BIC.  However, by the time there are three breaks, the 

number of parameters exceeds that of model M6, which still clearly outperforms all PLC models. 
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A key reason for the underperformance of the PLC models relative to model M6 can be seen in 

Figure 3, and that is the outlier cohorts of 1919 and 1920.  This can also be seen as the data point 

for age 65 in 1985 in Figure 7.  In order to allow for this distortion, we use a hybrid model.  This 

involves fitting model M6 to the data, but using only the cohort parameters for years of birth 

1919 and 1920.  These parameters are then subtracted from the original data before fitting the 

PLC models once again.   These models are denoted PLC(h) models, the “h” standing for hybrid.  

Results of this analysis are shown in Figure 8 and Table 2.  In Figure 9, I give 𝜅𝑡
𝑖1 and 𝜅𝑡

𝑖1 for 𝑖 = 1 

to 3 before showing the fit of these functions for the calendar years 1985 in Figure 10.  IGS again 

yields the same results. 

Figure 8: Log likelihood for model M5, PLC(h)1, PLC(h)2 and PLC(h)3, England and Wales, males, age 60-89, 

year 1961-2013 

 

Source: Human Mortality Database; authors’ calculations 
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Table 2: Summary data for models M5, M6, PLC(h)1, PLC(h)2 and PLC(h)3, England and Wales, males, age 

60-89, year 1961-2013 

Model Parameters Log likelihood AIC BIC Break Years 

M5 106 -18,454.0 37,119.9 37,688.0 N/A 

M6 180 -9,999.1 20,358.1 21,322.7 N/A 

PLC1 138 -11,793.5 23,862.9 24,602.4 1900 

PLC(h)2 160 -10,805.6 21,931.1 22,788.5 1900, 1934 

PLC(h)3 187 -10,664.5 21,703.0 22,705.1 1900, 1927, 1934 
Source: Human Mortality Database; authors’ calculations 

Figure 9: Estimated values of parameters 𝜿𝒕
(𝒊𝟏)

and 𝜿𝒕
(𝒊𝟐) for 𝒊 = 𝟏 to 𝟑 in PLC(h) models, England and Wales, 

males, age 60-89, year 1961-2013 

  

Source: Human Mortality Database; authors’ calculations 
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Figure 10: Logit q(1985,x) for PLC3, England and Wales, males, age 60-89 

 

Source: Human Mortality Database; authors’ calculations 

As Table 2 shows, controlling for the two outlier cohorts not only significantly improves the fit of 

the model – for an additional penalty of only two parameters – but it also changes the position 

of the break years slightly in PLC(h)2 and PLC(h)3.  In terms of the fit, PLC(h)3 and even PLC(h)2 

are close in performance to M6 as measured by the AIC and BIC.  However, because of the way 

the PLC and PLC(h) models deal with cohorts, the models remain more parsimonious than M6. 

5. CONCLUSIONS 
Starting with the CBD model M5, the PLC and PLC(h) models allow the inclusion of cohort effects 

with in a more parsimonious way than model M6.  The PLC(h) model includes two additional 

parameters to deal with the anomalous cohorts seen for birth years 1919 and 1920.  These two 

parameters significantly improve the fit of the model. More important than the fit, the PLC and 

PLC(h) models better reflect the way in which mortality rates develop over time than models 

which use a separate parameter or parameters for each year of birth. 
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